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Normal and Self-Adjoint Operators

1. Label the following statements as true or false. Assume that the underlying inner product
spaces are finite-dimensional.
(a) Every self-adjoint operator is normal.
(b) Operators and their adjoints have the same eigenvectors.

(c) If T is an operator on an inner product space V, then T is normal if and only if [T]s is
normal, where B is any ordered basis for V.

(d) A real or complex matrix A is normal if and only if L4 is normal.
(e) The eigenvalues of a self-adjoint operator must all be real.

(f) The identity and zero operators are self-adjoint.

(g) Every normal operator is diagonalizable.

(h) Every self-adjoint operator is diagonalizable.

2. For each linear operator T on an inner product space V, determine whether T is normal, self-
adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list
the corresponding eigenvalues.

(a) V =R?and T is defined by T(a,b) = (2a — 2b, —2a + 5b).

(b) V =R3and T is defined by T(a,b,c) = (—a + b,5b,4a — 2b + 5¢).
(c) V =C? and T is defined by T(a,b) = (2a + ib,a + 2b).

(d) V =P,(R) and T is defined by T(f) = f’, where

(f.8)= /Olf(t)g(t) dt.
(e) V = May2(R) and T is defined by T(A) = A'.

. . a b\ (c d
(f) V= My« 2(R) and T is defined by T <c d) = <a b)’

3. Give an example of a linear operator T on R? and an ordered basis for IR? that provides a
counterexample to the statement : If T is an operator on an inner product space V, then T is
normal if and only if [T]4 is normal, where g is any ordered basis for V.

4. Let T and U be self-adjoint operators on an inner product space V. Prove that TU is self-adjoint
if and only if TU = UT.

5. Let V be an inner product space, and let T be a normal operator on V. Prove that T — cI is
normal for every c € F.



6.

10.

11.

12.

13.

Let V be a complex inner product space, and let T be a linear operator on V. Define
T=YNT+T") and To= ~(T—T"
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(a) Prove that T; and T are self-adjoint and that T = T; + iT>.

(b) Suppose also that T = U; + ill;, where Uy and U, are self-adjoint. Prove that U; = T; and
U, = Tr.

(c) Prove that T is normal if and only if T; T, = T>T7.
Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of
V. Prove the following results.

(a) If T is self-adjoint, then Ty, is self-adjoint.

(b) Wt is T*-invariant.

(c) If Wis both T- and T*-invariant, then (Tyw)* = (T*)w.

(d) If Wis both T- and T*-invariant and T is normal, then Ty is normal.

Let T be a normal operator on a finite-dimensional complex inner product space V, and let W
be a subspace of V. Prove that if W is T-invariant, then W is also T*-invariant.

Let T be a normal operator on a finite-dimensional inner product space V. Prove that N(T) =
N(T*) and R(T) = R(T*).

Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for
allx e V

IT(x) £ ix[|? = | T(x) 1> + [l
Deduce that T — il is invertible and that [(T — il)~!]* = (T +iI)~..

Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner prod-
uct space V with an adjoint T*. Prove the following results.

(a) If T is self-adjoint, then (T(x), x) is real forall x € V.

(b) If T satisfies (T(x),x) = Oforallx € V, then T = T.
Hint: Replace x by x + y and then by x + iy, and expand the resulting inner products.
(c) If (T(x),x)isrealforallx € V, then T = T*.

Let T be a normal operator on a finite-dimensional real inner product space V whose charac-
teristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Hence
prove that T is self-adjoint.

Theorem : Let T be a linear operator on a finite-dimensional real inner product space V. Then T
is self-adjoint if and only if there exists an orthonormal basis B for V consisting of eigenvectors
of T.

An n x n real matrix A is said to be a Gramian matrix if there exists a real (square) matrix B
such that A = B'B. Prove that A is a Gramian matrix if and only if A is symmetric and all of its
eigenvalues are nonnegative.

Hint: Apply the above Theorem to T = L, to obtain an orthonormal basis {v1,vy,...,v,} of
eigenvectors with the associated eigenvalues Aq,A;,...,A,. Define the linear operator U by

U(vi) = VA



14.

15.

16.

Simultaneous Diagonalization. Let V be a finite-dimensional real inner product space, and let
U and T be self-adjoint linear operators on V such that UT = TU. Prove that there exists an
orthonormal basis for V consisting of vectors that are eigenvectors of both U and T. (Note that
the complex version of this result also holds good.)

Hint: For any eigenspace W = E, of T, we have that W is both T- and U-invariant and that W+
is both T- and U-invariant.

Let A and B be symmetric n X n matrices such that AB = BA. Use Exercise 14 to prove that
there exists an orthogonal matrix P such that P’ AP and P'BP are both diagonal matrices.

Prove the Cayley Hamilton theorem for a complex n x n matrix A. That s, if f(t) is the charac-
teristic polynomial of A, prove that f(A) = O.

Hint: Use Schur’s theorem to show that A may be assumed to be upper triangular, in which
case

n

ft) =TT(Ai—t).

i=1

Now if T = L4, we have (A;1 —T)(e;) € span({e1,ez,...,ej_1}) for j > 2, where {e,e2,..., €.}
is the standard ordered basis for C".

The following definitions are used in Exercises 17 through 23.

Definitions. A linear operator T on a finite-dimensional inner product space is called positive
definite [positive semidefinite] if T is self-adjoint and (T(x), x) > 0[(T(x), x) > 0] for all x # 0.

An n x n matrix A with entries from R or C is called positive definite [positive semidefinite] if
L 4 is positive definite [positive semidefinite].

17. Let T and U be self-adjoint linear operators on an n-dimensional inner product space V, and let

18.

A =[T] g, where B is an orthonormal basis for V. Prove the following results.
(a) T is positive definite [semidefinite] if and only if all of its eigenvalues are positive [non-
negative].
(b) T is positive definite if and only if
ZAi]-a]-Ei > 0 for all nonzero n-tuples (a1, az,...,a,).
1]
(c) T is positive semidefinite if and only if A = B*B for some square matrix B.
(d) If T and U are positive semidefinite operators such that T? = U?, then T = U.
(e) If T and U are positive definite operators such that TU = UT, then TU is positive definite.

(f) T is positive definite [semidefinite] if and only if A is positive definite [semidefinite].
Because of (f), results analogous to items (a) through (d) hold for matrices as well as operators.

Let T : V — W be a linear transformation, where V and W are finite-dimensional inner product
spaces. Prove the following results.

(@) T*T and TT* are positive semidefinite.
(b) rank(T*T) = rank(TT*) = rank(T).

19. Let T and U be positive definite operators on an inner product space V. Prove the following

results.



20.

21.

22.

23.

24.

(@) T+ U is positive definite.
(b) If ¢ > 0, then cT is positive definite.

(c) T~!is positive definite.

Let V be an inner product space with inner product (-, -), and let T be a positive definite linear
operator on V. Prove that (x, y>/ = (T(x),y) defines another inner product on V.

Let V be a finite-dimensional inner product space, and let T and U be self-adjoint operators
on V such that T is positive definite. Prove that both TU and UT are diagonalizable linear
operators that have only real eigenvalues.

Hint: Show that UT is self-adjoint with respect to the inner product (x,y) = (T(x),y). To
show that TU is self-adjoint, repeat the argument with T~! in place of T.

This exercise provides a converse to Exercise 20. Let V be a finite-dimensional inner product
space with inner product (-, ), and let (-, -)’ be any other inner product on V.

(a) Prove that there exists a unique linear operator T on V such that (x, y>, = (T(x),y) for all
xandyin V.

Hint: Let B = {v1,v2,...,0s} be an orthonormal basis for V with respect to <-, ->, and
define a matrix A by A;; = (vj, vi>/ foralliand j. Let T be the unique linear operator on V
such that [T]|g = A.

(b) Prove that the operator T of (a) is positive definite with respect to both inner products.

Let U be a diagonalizable linear operator on a finite-dimensional inner product space V such
that all of the eigenvalues of U are real. Prove that there exist positive definite linear operators
Ty and T; and self-adjoint linear operators T, and T such that U = T,T1 = T T;.

Hint: Let <-, > be the inner product associated with V, B a basis of eigenvectors for U. <-, . >, the
inner product on V with respect to which B is orthonormal, and T the positive definite operator
according to Exercise 22. Show that U is self-adjoint with respect to (-, ->/ and U = T ut,
(the adjoint is with respect to (-, +)). Let T, = T, *U*.

This argument gives another proof of Schur’s theorem. Let T be a linear operator on a finite
dimensional inner product space V.

(a) Suppose that B is an ordered basis for V such that [T]g is an upper triangular matrix. Let
7 be the orthonormal basis for V obtained by applying the Gram Schmidt orthogonaliza-
tion process to B and then normalizing the resulting vectors. Prove that [T}, is an upper
triangular matrix.

(b) Recall that if the characteristic polynomial of T splits, then there is an ordered basis  for
V such that [T]g is an upper triangular matrix.

(c) Use (b) and (a) to obtain an alternate proof of Schur’s theorem.
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