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Normal and Self-Adjoint Operators

1. Label the following statements as true or false. Assume that the underlying inner product
spaces are finite-dimensional.

(a) Every self-adjoint operator is normal.

(b) Operators and their adjoints have the same eigenvectors.

(c) If T is an operator on an inner product space V, then T is normal if and only if [T]β is
normal, where β is any ordered basis for V.

(d) A real or complex matrix A is normal if and only if LA is normal.

(e) The eigenvalues of a self-adjoint operator must all be real.

(f) The identity and zero operators are self-adjoint.

(g) Every normal operator is diagonalizable.

(h) Every self-adjoint operator is diagonalizable.

2. For each linear operator T on an inner product space V, determine whether T is normal, self-
adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list
the corresponding eigenvalues.

(a) V = R2 and T is defined by T(a, b) = (2a− 2b,−2a + 5b).

(b) V = R3 and T is defined by T(a, b, c) = (−a + b, 5b, 4a− 2b + 5c).

(c) V = C2 and T is defined by T(a, b) = (2a + ib, a + 2b).

(d) V = P2(R) and T is defined by T( f ) = f ′, where

〈
f , g
〉
=
∫ 1

0
f (t)g(t) dt.

(e) V = M2×2(R) and T is defined by T(A) = At.

(f) V = M2×2(R) and T is defined by T
(

a b
c d

)
=

(
c d
a b

)
.

3. Give an example of a linear operator T on R2 and an ordered basis for R2 that provides a
counterexample to the statement : If T is an operator on an inner product space V, then T is
normal if and only if [T]β is normal, where β is any ordered basis for V.

4. Let T and U be self-adjoint operators on an inner product space V. Prove that TU is self-adjoint
if and only if TU = UT.

5. Let V be an inner product space, and let T be a normal operator on V. Prove that T − cI is
normal for every c ∈ F.



6. Let V be a complex inner product space, and let T be a linear operator on V. Define

T1 =
1
2
(T + T∗) and T2 =

1
2i
(T − T∗).

(a) Prove that T1 and T2 are self-adjoint and that T = T1 + iT2.

(b) Suppose also that T = U1 + iU2, where U1 and U2 are self-adjoint. Prove that U1 = T1 and
U2 = T2.

(c) Prove that T is normal if and only if T1T2 = T2T1.

7. Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of
V. Prove the following results.

(a) If T is self-adjoint, then Tw is self-adjoint.

(b) W⊥ is T∗-invariant.

(c) If W is both T- and T∗-invariant, then (TW)∗ = (T∗)W .

(d) If W is both T- and T∗-invariant and T is normal, then TW is normal.

8. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W
be a subspace of V. Prove that if W is T-invariant, then W is also T∗-invariant.

9. Let T be a normal operator on a finite-dimensional inner product space V. Prove that N(T) =
N(T∗) and R(T) = R(T∗).

10. Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for
all x ∈ V

‖T(x)± ix‖2 = ‖T(x)‖2 + ‖x‖2.

Deduce that T − iI is invertible and that [(T − iI)−1]∗ = (T + iI)−1.

11. Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner prod-
uct space V with an adjoint T∗. Prove the following results.

(a) If T is self-adjoint, then
〈

T(x), x
〉

is real for all x ∈ V.

(b) If T satisfies
〈

T(x), x
〉
= 0 for all x ∈ V, then T = T0.

Hint: Replace x by x + y and then by x + iy, and expand the resulting inner products.

(c) If
〈

T(x), x
〉

is real for all x ∈ V, then T = T∗.

12. Let T be a normal operator on a finite-dimensional real inner product space V whose charac-
teristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Hence
prove that T is self-adjoint.

13. Theorem : Let T be a linear operator on a finite-dimensional real inner product space V. Then T
is self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors
of T.

An n × n real matrix A is said to be a Gramian matrix if there exists a real (square) matrix B
such that A = BtB. Prove that A is a Gramian matrix if and only if A is symmetric and all of its
eigenvalues are nonnegative.

Hint: Apply the above Theorem to T = LA to obtain an orthonormal basis {v1, v2, . . . , vn} of
eigenvectors with the associated eigenvalues λ1, λ2, . . . , λn. Define the linear operator U by
U(vi) =

√
λivi.



14. Simultaneous Diagonalization. Let V be a finite-dimensional real inner product space, and let
U and T be self-adjoint linear operators on V such that UT = TU. Prove that there exists an
orthonormal basis for V consisting of vectors that are eigenvectors of both U and T. (Note that
the complex version of this result also holds good.)

Hint: For any eigenspace W = Eλ of T, we have that W is both T- and U-invariant and that W⊥

is both T- and U-invariant.

15. Let A and B be symmetric n× n matrices such that AB = BA. Use Exercise 14 to prove that
there exists an orthogonal matrix P such that Pt AP and PtBP are both diagonal matrices.

16. Prove the Cayley Hamilton theorem for a complex n× n matrix A. That is, if f (t) is the charac-
teristic polynomial of A, prove that f (A) = O.

Hint: Use Schur’s theorem to show that A may be assumed to be upper triangular, in which
case

f (t) =
n

∏
i=1

(Aii − t).

Now if T = LA, we have (Ajjl− T)(ej) ∈ span({e1, e2, . . . , ej−1}) for j ≥ 2, where {e1, e2, . . . , en}
is the standard ordered basis for Cn.

The following definitions are used in Exercises 17 through 23.

Definitions. A linear operator T on a finite-dimensional inner product space is called positive
definite [positive semidefinite] if T is self-adjoint and

〈
T(x), x

〉
> 0[

〈
T(x), x

〉
≥ 0] for all x 6= 0.

An n× n matrix A with entries from R or C is called positive definite [positive semidefinite] if
LA is positive definite [positive semidefinite].

17. Let T and U be self-adjoint linear operators on an n-dimensional inner product space V, and let
A = [T]β, where β is an orthonormal basis for V. Prove the following results.

(a) T is positive definite [semidefinite] if and only if all of its eigenvalues are positive [non-
negative].

(b) T is positive definite if and only if

∑
i,j

Aijajai > 0 for all nonzero n-tuples (a1, a2, . . . , an).

(c) T is positive semidefinite if and only if A = B∗B for some square matrix B.

(d) If T and U are positive semidefinite operators such that T2 = U2, then T = U.

(e) If T and U are positive definite operators such that TU = UT, then TU is positive definite.

(f) T is positive definite [semidefinite] if and only if A is positive definite [semidefinite].

Because of (f), results analogous to items (a) through (d) hold for matrices as well as operators.

18. Let T : V →W be a linear transformation, where V and W are finite-dimensional inner product
spaces. Prove the following results.

(a) T∗T and TT∗ are positive semidefinite.

(b) rank(T∗T) = rank(TT∗) = rank(T).

19. Let T and U be positive definite operators on an inner product space V. Prove the following
results.



(a) T + U is positive definite.

(b) If c > 0, then cT is positive definite.

(c) T−1 is positive definite.

20. Let V be an inner product space with inner product
〈
·, ·
〉
, and let T be a positive definite linear

operator on V. Prove that
〈

x, y
〉′

=
〈

T(x), y
〉

defines another inner product on V.

21. Let V be a finite-dimensional inner product space, and let T and U be self-adjoint operators
on V such that T is positive definite. Prove that both TU and UT are diagonalizable linear
operators that have only real eigenvalues.

Hint: Show that UT is self-adjoint with respect to the inner product
〈

x, y
〉′

=
〈

T(x), y
〉
. To

show that TU is self-adjoint, repeat the argument with T−1 in place of T.

22. This exercise provides a converse to Exercise 20. Let V be a finite-dimensional inner product
space with inner product

〈
·, ·
〉
, and let

〈
·, ·
〉′ be any other inner product on V.

(a) Prove that there exists a unique linear operator T on V such that
〈

x, y
〉′

=
〈

T(x), y
〉

for all
x and y in V.
Hint: Let β = {v1, v2, . . . , vn} be an orthonormal basis for V with respect to

〈
·, ·
〉
, and

define a matrix A by Aij =
〈
vj, vi

〉′ for all i and j. Let T be the unique linear operator on V
such that [T]β = A.

(b) Prove that the operator T of (a) is positive definite with respect to both inner products.

23. Let U be a diagonalizable linear operator on a finite-dimensional inner product space V such
that all of the eigenvalues of U are real. Prove that there exist positive definite linear operators
T1 and T′1 and self-adjoint linear operators T2 and T′2 such that U = T2T1 = T′1T′2.

Hint: Let
〈
·, ·
〉

be the inner product associated with V, β a basis of eigenvectors for U.
〈
·, ·
〉′ the

inner product on V with respect to which β is orthonormal, and T1 the positive definite operator
according to Exercise 22. Show that U is self-adjoint with respect to

〈
·, ·
〉′ and U = T−1

1 U∗T1

(the adjoint is with respect to
〈
·, ·
〉
). Let T2 = T−1

1 U∗.

24. This argument gives another proof of Schur’s theorem. Let T be a linear operator on a finite
dimensional inner product space V.

(a) Suppose that β is an ordered basis for V such that [T]β is an upper triangular matrix. Let
γ be the orthonormal basis for V obtained by applying the Gram Schmidt orthogonaliza-
tion process to β and then normalizing the resulting vectors. Prove that [T]γ is an upper
triangular matrix.

(b) Recall that if the characteristic polynomial of T splits, then there is an ordered basis β for
V such that [T]β is an upper triangular matrix.

(c) Use (b) and (a) to obtain an alternate proof of Schur’s theorem.
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